
Average Path Length of
Binary Decision Diagrams

Jon T. Butler, Fellow, IEEE, Tsutomu Sasao, Fellow, IEEE, and Munehiro Matsuura

Abstract—The traditional problem in binary decision diagrams (BDDs) has been to minimize the number of nodes since this reduces

the memory needed to store the BDD. Recently, a new problem has emerged: minimizing the average path length (APL). APL is a

measure of the time needed to evaluate the function by applying a sequence of variable values. It is of special significance when BDDs

are used in simulation and design verification. A main result of this paper is that the APL for benchmark functions is typically much

smaller than for random functions. That is, for the set of all functions, we show that the average APL is close to the maximum path

length, whereas benchmark functions show a remarkably small APL. Surprisingly, however, typical functions do not achieve the

absolute maximum APL. We show that the parity functions are unique in having that distinction. We show that the APL of a BDD can

vary considerably with variable ordering. We derive the APL for various functions, including the AND, OR, threshold, Achilles’ heel, and

certain arithmetic functions. We show that the unate cascade functions uniquely achieve the absolute minimum APL.

Index Terms—Binary decision diagrams, BDD, average path length, APL, worst-case path length.

�

1 INTRODUCTION

CONSIDERABLE research has been devoted to the use of
binary decision diagrams (BDDs) in logic design,

dating back 40 years to Lee’s [1] original paper. Most of
this research followed from the seminal paper by Bryant [2],
who showed that a reduced ordered BDD (ROBDD) is a
canonical representation of a logic function. The focus of the
latter paper and many papers [2], [3], [4], [5] that followed
has been on minimizing the number of nodes. This is
inspired by the memory needed to store the BDD, which
can be large for practical circuits.

However, a different cost measure is also important. For

each assignment of values to the variables of a function fðXÞ,
there is a path from the root node to one of two terminal

nodes, representing a value of fðXÞ. Summing this path

length over all 2n assignments and dividing by 2n yields the

average path length or APL of fðXÞ. In general, the APL

depends on the order of the variables and we denote the

minimum APL over all possible orderings as APLfðXÞ. In

logic simulation, the function realized is verified by

applying (typically many) test vectors [7], [8], [9]. A BDD

with a small APL can be evaluated quickly and is important

in logic simulation applications. There are at least three

papers that describe the minimization of the APL of BDDs

[9], [10], [11]. Iguchi et al. [12] compare the APL for four

different decision diagrams representing multioutput func-

tions. Minimizing the APL of multivalued functions is

discussed in [13].

BDDs have been used in the design of pass transistor
logic circuits [28], [29], [30], [31], which have the advantage
of low power dissipation. In this case, there is the prospect
of choosing an ordering with a small APL as this yields
smaller delay. Also, in a logic synthesis involving functional
decomposition, the paths in the BDD representing the
function create don’t care values from missing variables. In
this case, minimizing the path length has the effect of
increasing don’t care values [32], which, in turn, reduces
circuit complexity.

APL has been important in other contexts. For example,
Bell [14] has considered its use in decision trees for pattern
recognition systems. In this application, one seeks to answer
the fewest questions needed, on the average, to identify the
object. APL is useful in the analysis of algorithms, where
decision trees have been used to determine lower bounds
on the complexity of sorting algorithms [15]. Applications
also occur in databases [16]. Qin and Malik [17] consider
APL in decision trees for the decoding logic for micro-
processor instructions. For more information on research
prior to 1982, the reader is referred to Moret [18]. For
information on more recent research, the reader is referred
to Murthy [19]. We address the following question:

Does the APL of a BDD of a logic function vary significantly
enough with the variable ordering to merit a close examination?

In Fig. 1, we show the BDD of the carry-out of a binary
adder. Fig. 1a shows the circuit, which consists of b full-
adders connected in a ripple-carry configuration. It is
assumed there is a carry-in variable, cin.

Fig. 1b shows the BDD for this function, where the
variables are in descending order (most significant bits at
the top), and Fig. 1c shows the BDD in which the variables
are in ascending order (least significant bits at the top). Fig. 2
shows the distribution of path lengths for the two orderings
for a b ¼ 16 bit adder. The pattern associated with the most
significant bit at the top is a sawtooth because there are no
paths of odd length. In this distribution, most paths are
short, resulting in an APL of 4.0. The paths associated with
the least significant bits at the top are long, resulting in a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005 1041

. J.T. Butler is with the Department of Electrical and Computer Engineering,
Naval Postgraduate School, Code EC/Bu, Monterey, CA 93943-5121.
E-mail: jbutler@nps.navy.mil.

. T. Sasao and M. Matsuura are with the Department of Computer Science
and Electronics, Kyushu Institute of Technology, Iizuka-shi, Fukuoka-ken,
820-8502, Japan. E-mail: {sasao, matsuura}@cse.kyutech.ac.jp.

Manuscript received 25 Aug. 2003; revised 18 June 2004; accepted 28 Jan.
2005; published online 15 July 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0138-0803.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2004 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Average Path Length of Binary Decision Diagrams

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The traditional problem in binary decision diagrams (BDDs) has been to minimize the number of nodes
since this reduces the memory needed to store the BDD. Recently, a new problem has emerged: minimizing
the average path length (APL). APL is a measure of the time needed to evaluate the function by applying a
sequence of variable values. It is of special significance when BDDs are used in simulation and design
verification. A main result of this paper is that the APL for benchmark functions is typically much smaller
than for random functions. That is, for the set of all functions, we show that the average APL is close to the
maximum path length, whereas benchmark functions show a remarkably small APL. Surprisingly,
however, typical functions do not achieve the absolute maximum APL. We show that the parity functions
are unique in having that distinction. We show that the APL of a BDD can vary considerably with variable
ordering. We derive the APL for various functions, including the AND, OR, threshold, Achilles? heel, and
certain arithmetic functions. We show that the unate cascade functions uniquely achieve the absolute
minimum APL.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

large APL, 25.0. Both orderings yield the same number of
nodes. Thus, the APL of the carry-out function is strongly
dependent on the variable ordering.

In this paper,we focus on reducedorderedbinarydecision
diagrams (ROBDD), as proposed by Bryant [2]. As such, the
order of the variables along all paths from the root node to a
terminal node is the same (corresponding to the O of
ROBDD). Further, each subfunction, as represented by an
assignment of values to variables beginning at the root node,
is represented by a unique node (corresponding to the R of
ROBDD). As is common, we use BDD to abbreviate ROBDD.

In this paper, we do not discuss methods for minimizing
the APL of BDDs. There are a number of approaches for
doing this. One is to enumerate all orderings and to choose
the one that produces the smallest APL. A more efficient
approach is branch and bound [11], which can be applied to

functions with up to 25 variables. Both methods find the
exact minimum. For functions on more variables, heuristic
methods must be used. Two heuristics include a window
permutation approach [10] and a dynamic variable reorder-
ing method [11], [33].

This paper is organized as follows: In Section 2, we
discuss specific functions. As far as we know, this is the first
analysis of important functions with respect to the APL of
their BDD. In Section 3, we analyze the average of the APL
for classes of functions, including all functions and all
symmetric functions. We show that these averages are near
the maximum values. We show, however, that the set of
symmetric threshold functions does not share this char-
acteristic. In Section 4, we show that benchmark functions
have a relatively small APL. Section 5 discusses conclu-
sions. The reader interested in just the results has only to
read the main part. For the reader interested in the details,
we have provided proofs in the Appendix.

2 THE APL OF SPECIFIC FUNCTIONS

2.1 AND/OR Function

The BDD of an n-variable AND function, shown in Fig. 3a
consists of a single path from the root node to the terminal
node labeled 1. For any node, there is an edge to the terminal
node labeled 0. Therefore, we expect the APL to be small.

Theorem 1.

APLANDðnÞ ¼ 2� 1

2n�1
:

Proof. See the Appendix. tu

This has been reported by Breithart and Gal [20]. We extend
this by deriving also the distribution of path lengths for the
AND function (see the Appendix).

Since the BDD of the OR function is isomorphic to that of
the AND function, APLANDðnÞ ¼ APLORðnÞ. The AND and
OR functions belong to a special class of functions.

2.2 Unate Cascade Functions

Definition 1 [21]. f is a unate cascade function if f can be
represented as

fðx1; x2; . . .xnÞ ¼ x�
1}1ðx�

2}2ð. . . ðx�
n�1}n�1x

�
nÞÞ . . .Þ;

1042 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

Fig. 1. Two BDDs for the carry-out function of a b-bit ripple carry adder.

(a) Carry-out cout of b-bit ripple carry adder circuit. (b) BDD for cout with

MSB at top. (c) BDD for cout with LSB at top.

Fig. 2. Distributions of path lengths for the carry-out function.

where x�
i is either xi or �xxi and }i is either the OR (_) or AND

(^) operator.

The AND and OR functions are unate cascade functions.
The BDD of a unate cascade function has one edge from
every node to one of the two terminal nodes, except the
bottom node, where two edges are incident to the terminal
nodes. We have

Theorem 2. The unate cascade functions are uniquely those
functions whose BDDs have the smallest APL (2� 1

2n�1)
among all functions that depend on n-variables.

Proof. See the Appendix. tu

Having identified exactly those functions whose BDD has
the smallest APL, we now consider which functions have
the largest APL.

2.3 Parity Functions

Fig. 3b shows the BDD of the Exclusive OR function. All
paths have length n, a result of the fact that every variable
in every assignment of values is needed to determine the
function value. These statements also apply to the comple-
ment of the Exclusive OR function. Collectively, these two
functions form the parity functions. Since all path lengths are
n, the APL is n.

Theorem 3. The parity functions are uniquely those functions
whose BDDs have the largest APL (n) among all functions
that depend on n variables.

Proof. See the Appendix. tu

Theorems 2 and 3 completely characterize the functions
with the smallest and the largest APL. We now establish
properties of functions whose APL falls between these
extremes, beginning with functions whose BDDs are similar
to the parity functions. From Moret [18], we have

Definition 2. A variable xi in function fðXÞ is indispensable iff
for every assignment a!2 Bn�1 of values to X � fxig,
fð a!Þjxi¼0 6¼ fð a!Þjxi¼1, where B ¼ f0; 1g.

For example, in the function

fðx1; x2; x3Þ ¼ x1 � x2 � x3x4;

x1 and x2 are indispensable, but x3 and x4 are not. The
descriptor “indispensable” is due to the fact that it is always
necessary to specify the value of an indispensable variable
in order to determine the value of the function. From this,
we can conclude

Theorem 4. Let fðXÞ be a function with N indispensable
variables. Then, all paths in any BDD of fðXÞ have a length of
at least N , and APLfðXÞ � N .

For a given assignment a! of values to X � fxig,
fðXÞjxi¼0 ¼ �ffðXÞjxi¼1. It follows that fðXÞjxi¼0 ¼ �ffðXÞjxi¼1

and fðXÞ ¼ fðXÞjxi¼0 � xi. Thus, we can state

Theorem 5. Let fðXÞ be a function with N indispensable
variables, y1, y2, . . . , and yN . Then,

fðXÞ ¼ gðX � fy1; y2; :::; yNgÞ � y1 � y2 � . . .� yN:

Theorem 5 shows that the functions with the most
indispensable variables are the two parity functions. It
also shows that there are no functions dependent on
n variables that have n� 1 dispensable variables. There
are functions with n� 2 indispensable variables, e.g.,
fðx1; x2; x3Þ ¼ x1 � x2 � x3x4.

2.4 Comparison and Carry-Out Functions

We examine two comparison functions, the Equal-to and
the Greater-than-or-equal-to functions, as well as the
carry out function. Let X ¼ fxb�1; xb�2; . . . ; x0g and Y ¼
fyb�1; yb�2; . . . ; y0g be the input variables that represent a
standard binary number. That is, x ¼ xb�12

b�1 þ xb�22
b�2 þ

. . .þ x02
0 and y ¼ yb�12

b�1 þ yb�22
b�2 þ . . .þ y02

0 are the
standard binary representations corresponding to logic
variable sets X and Y , respectively. Then, the Equal-to
function fx¼yðX;Y Þ ¼ 1 iff x ¼ y and the Greater-than-or-
equal-to function fx�yðX;Y Þ ¼ 1 iff x � y. Fig. 4 shows the
BDDs for these functions.

The Equal-to function is 1 iff the pair of ith significant
bits are identical for all i. Thus, its BDD structure is

BUTLER ET AL.: AVERAGE PATH LENGTH OF BINARY DECISION DIAGRAMS 1043

Fig. 3. BDDs for the (a) AND and (b) EXOR functions.

Fig. 4. BDDs for two comparison functions. (a) Equal-to function.
(b) Greater-than-or-equal-to function.

unaffected by a reordering of the pairs. For the Greater-

than-or-equal-to function, the smallest APL occurs when
the MSB is at the top, as is the case for the carry-out

function. Fig. 4 shows its structure when the MSB is at the
top. We can state

Theorem 6. The smallest APL in a BDD for the Greater-than-or-

equal-to function is 4� 5
2b

and is achieved when variables are

ordered in ascending significance.

Proof. See the Appendix. tu

Note that the BDD structure for the carry-out, as shown in

Fig. 1b, and the comparison functions, as shown in Fig. 4, are
similar. This suggests that their APL is similar. Table 1 shows

the APL for each of these functions. It is a constant 4 less a
function of b, the number of bits, that approaches 0 as b

increases. Thus, in the limit, all three BDDs have anAPL of 4.

Note that the (small) difference in theAPLvalues is explained
entirely by the structure at the bottom of the BDDs.

2.5 Symmetric Threshold Functions

A (totally) symmetric function is unchanged by any permuta-

tion of its input variables. For example, the AND, OR, and
parity functions are symmetric. A symmetric threshold

function is a symmetric function that is 1 iff t or more of
its variables are 1, for 0 � t � nþ 1. For example, the AND

and OR functions are symmetric threshold functions, where
t ¼ n and t ¼ 1, respectively. However, the Exclusive OR
function is not a symmetric threshold function, although it

is a symmetric function. There are nþ 2 symmetric thresh-
old functions on n variables.

Fig. 5 shows the distribution of path lengths for

17 symmetric threshold functions on 33 variables. The

AND function shown on the extreme left corresponds to

t ¼ 33, while the majority function (which is 1 iff a majority

of the variables are 1) shown on the extreme right

corresponds to t ¼ 17. Approximately one-half of the

symmetric threshold functions are shown; all except the

majority function distributions occur as pairs. For example,

the distribution of path lengths associated with the AND

function, where t ¼ 33, also represents the distribution of

path lengths for the OR function, where t ¼ 1. For the APL

of a symmetric threshold function, including trivial func-

tions f ¼ 0 and f ¼ 1, we have

Theorem 7.

APLS THRESðn;tÞ ¼ 2k�
Xk
j¼1

n�j
k�j

� �
2n�j

j;

where k ¼ minft; n� tþ 1g.
Proof. See the Appendix. tu

When n is large, we can write

Corollary 1.

APLS THRESðn;tÞ � 2minft; n� tþ 1g;

where AðnÞ � BðnÞ means limn!1
AðnÞ
BðnÞ ¼ 1.

2.6 Majority Function

When n is odd and t and n are related by n ¼ 2t� 1, the

symmetric threshold function is themajority function. One of

the two functions realizedby the circuit labeledFA inFig.1a is

a 3-variable majority function: It is 1 iff two or three variables

are 1. Fig. 6 shows the BDD of the majority function on five

variables, which resembles a square. We have

Theorem 8.

APLMAJðnÞ ¼ n� nþ 1

2n
n

n�1
2

� �
þ 1; ð1Þ

where n is odd.

Proof. See the Appendix. tu

The second term contains the factor n
n�1
2

� �
, which is n!

n�1
2 !nþ1

2 !
.

The factorials can be approximated using Stirling’s approx-

imation, yielding

1044 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

TABLE 1
APL for Carry-Out and Comparison Functions

Fig. 5. Distribution of path lengths for 33-variable symmetric threshold

functions for t from 33 (AND) to 17 (Majority).

Fig. 6. BDD of the 5-variable majority function.

Corollary 2.

APLMAJðnÞ � n�
ffiffiffiffiffiffi
2n

�

r
þ 1: ð2Þ

We could also write APLMAJðnÞ � n, but the inclusion of

terms �
ffiffiffiffi
2n
�

q
þ 1 in (2) improves the approximation’s

precision for small values of n. For n ¼ 3 and n ¼ 15, the

exact expression and the approximation of (2) differ by

4.5 percent and 0.4 percent, respectively.
Note that, for a general symmetric threshold function

whose APL is approximated in Corollary 1, we assume the
threshold t stays constant as n ! 1. For the APL of the
Majority function given in Corollary 2, we assume that n ¼
2t� 1 always holds so that t increases as n increases.

2.7 BTREE Function

We now consider the BTREE logic function that is
characterized by the structure of its BDD. Namely, it is in
the form of a binary tree, where each node is labeled by a
unique variable. Therefore, a BTREE function on n variables
has n nonterminal nodes. We restrict BTREEs to be
balanced: Namely, no path in a BTREE has a length of
more than 1 longer than any other path. When nþ 1 is a
power of 2, the BTREE is a complete balanced tree and every
path has length log2ðnþ 1Þ. Fig. 7 shows a BDD of a BTREE
function on seven variables. The BTREE is important
because its maximum path length is the smallest among all
n variable functions. For a discussion of the importance of
the longest path length in BDDs, the reader is referred to [6].
For general BTREE functions, we can state

Theorem 9.

APLBTREEðnÞ ¼ blog2ðnþ 1Þc þ ðnþ 1Þ � 2blog2ðnþ1Þc

blog2ðnþ 1Þc :

Proof. See the Appendix. tu

The BTREE function is interesting because of the
following:

Theorem 10. The longest path length in a BDD of an n-variable
function is bounded below by dlog2ðnþ 1Þe. The BTREE
function achieves this lower bound.

2.8 Achilles’ Heel Function

The Achilles’ heel function [22] is often used to show the
effect of variable order on the number of nodes in a BDD. In
this section, we derive the APL of a BDD for the Achilles’

heel function for the good order, which produces a BDD
with n nodes, and the poor order which produces a BDD
with 2

n
2þ1 � 2 nodes [2].

Definition 3. The Achilles’ heel function is

fðx1; x2; . . . ; xnÞ ¼ x1x2 _ x3x4 _ . . . _ xn�1xn; ð3Þ

where n is an even positive integer.

First, we consider the Achilles’ heel function using the good
order (top to bottom) x1, x2, x3, x4, . . . , xn�1, and xn. For this
case, the number of nodes is n. We have

Theorem 11.

APLAchillesGoodOrderðnÞ ¼ 6� 6
3

4

� �n
2

:

Proof. See the Appendix. tu

As n ! 1, APLAchillesGoodOrderðnÞ ! 6. Like the unate cas-
cade and comparison functions, the APL of the BDD for the
Achilles’ heel function (with this order) is small.

Next, we consider the APL of the BDD of the Achilles’
heel function using the bad order (top to bottom) x1, x3, x5,
. . . xn�1 x2, x4, x6, . . . , and xn.

Theorem 12.

APLAchillesPoorOrderðnÞ ¼
n

2
þ 2� 2

3

4

� �n
2

:

Proof. See the Appendix. tu

In this case, APLAchillesPoorOrderðnÞ is approximately n
2 for

large n, in contrast to a near constant 6 for the APL of a BDD
with the good order x1, x2, x3, x4, . . . , xn�1, and xn.

2.9 Distribution of Path Lengths

In this section, we compare the distributions of path lengths
for various functions. These were produced by the
generating functions used in the Appendix to compute
the APL. Fig. 8 shows these distributions for five functions
on n ¼ 33 variables. This graph shows that the AND
function has many short paths compared to the Majority
and Parity functions, for example. The Carry-Out/Equal-to

BUTLER ET AL.: AVERAGE PATH LENGTH OF BINARY DECISION DIAGRAMS 1045

Fig. 7. BDD of the 7-variable BTREE function.

Fig. 8. Distributions of path lengths for various 33-variable functions.

and BTREE function can also be seen to have reasonably
short paths. In order to show the detail of the distributions,
the y axis is limited to 0.5, truncating the curves associated
with the BTREE and Parity functions.

3 APL FOR SETS OF FUNCTIONS

While the values of the APL in BDDs of example functions
are useful in comparing with the APL of a given function,
knowing the average of the APL over sets of functions is
also interesting. We ask and answer the question

What is the expected value of APL for three classes of
functions—symmetric functions, symmetric threshold functions,
and all functions?
Of particular interest is whether the expected value falls
near the maximum, such as the parity function, or near the
minimum, such as the AND function. We use AvgAPLS to
denote the average of the APL over all functions belonging
to the set S of functions.

3.1 Set of Symmetric Functions

It is known [23] that the BDD of any symmetric function
dependent on n variables has at least one path that is the
longest possible, n. We extend this by showing that
AvgAPLAllSymðnÞ, the average of the APL of BDDs over
all symmetric functions, approaches n as n increases.
Specifically,

Theorem 13.

AvgAPLAllSymðnÞ ¼ n� 1� 1

2n
:

Proof. See the Appendix. tu

3.2 Set of Symmetric Threshold Functions

Recall that a symmetric threshold function is a symmetric
function that is 1 iff k or more of the variables are 1. With
respect to AvgAPLSymThres, the average APL over all
symmetric threshold functions, we have

Theorem 14.

AvgAPLAllSymThresðnÞ ¼
n2 þ n

2ðnþ 2Þ :

Proof. See the Appendix. tu

From this, it follows that

Corollary 3.

AvgAPLAllSymThresðnÞ �
n

2
:

This is unusual. Namely, the set of symmetric threshold
functions represents a set whose AvgAPL does not
approach n as n increases.

3.3 Set of All Functions

In the case of symmetric functions, we can ignore ordering
since any ordering yields a minimal BDD. That is not the
case for arbitrary functions. In the case of all functions, we
determine an upper bound on AvgAPLALLðnÞ, the APL for
all functions on n variables. Namely, we compute

AvgAPLAllðn;�Þ, the APL over all n-variable functions for

fixed ordering � of the variables. We have

Theorem 15.

AvgAPLAllðnÞ � AvgAPLAllðn;�Þ ¼ ðn� 1Þ þ 1

2
�
Xn�1

i¼1

1

22i
: ð4Þ

Proof. See the Appendix. tu

For n ! 1, we can write

Corollary 4.

AvgAPLAllðnÞ � AvgAPLAllðn;�Þ � n� 1þ 0:183578: ð5Þ

The upper bounds expressed in (4) and (5) can be

substantiated by comparing them with statistical data. The

third column of Table 2 shows the APL for sets of functions

on n variables for 3 � n � 16. For n ¼ 3 and 4, the average

of the APL was taken over all functions. For each n in the

range 5 � n � 14, 1,000 sample functions were generated.

For each function, the APL was computed by a heuristic

[11] using variable sifting, yielding a minimal or near-

minimal APL. Since a minimal APL is not guaranteed, the

experimental data in Table 2 (third column) also represents

an upper bound. However, it is likely to be a close

approximation to the actual value of AvgAPLAllðnÞ and

we have chosen to label the column AvgAPLAllðnÞ. Note

that the data indeed shows an APL close to n. As n

increases, AvgAPLAllðnÞ, as approximated by 1,000 sam-

ples, approaches the upper bound in (4), which is given in

the second column. That is, the second column of Table 2

shows a theoretical result, as expressed by in (4), namely,

the upper bound, AvgAPLAllðn;�Þ, derived by averaging

the APL over all functions, assuming that, in all functions,

the same ordering is applied to the variables.

1046 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

TABLE 2
AvgAPLallðnÞ for 3 � n � 16 Obtained by Averaging
1,000 Samples and from Theoretical Calculations

y Obtained by enumerating all functions.

3.4 Set of All Functions with a Specified Number of
Minterms

Instead of considering all n-variable functions as a single set,
as we did in the previous section, we now divide this set into
subsets, according to the number true minterms. A true
minterm of a function f is an assignment of values to all
variables that causes f to be 1. For example, theANDfunction
has exactly one true minterm (x1x2 . . .xn ¼ 11 . . . 1). Func-
tions with few true minterms tend to have simple BDDs. We
seek to determine how the number of true minterms affects
the APL. For most functions, the number of assignments of
values to the variables that yield 0 nearly equals the number
that yield 1. However, certain important functions, like the
AND and OR, have a large disparity in these two numbers.

We investigated this for functions on n = 6, 8, and
10 variables. For each value of n, we randomly chose
10,000 functions in which the fraction of assignments that
mapped to 1 ranged over k=2n ¼ 1=16, 1=8, 3=16, 1=4, 5=16,
3=8, 7=16, and 1=2. For each set of 10,000 functions, we
computed the APL using the heuristic method of [11]. As in
the previous section, the use of a heuristicmethodmeans that
the data represents an upper bound of AvgAPLallðn; kÞ;
however, the values shown are likely to be close to the exact
values and we use AvgAPLallðn; kÞ to label the column. Data
above k=2n ¼ 1=2 is similar since a minimal BDD for some
function �ff can be obtained from a minimal BDD for f by
interchanging the terminal nodes 0 and 1. This latter data is
omitted. Table 3 shows thedata. It canbe seen that theAPL for
functions increaseswith the fraction of assignmentsmapping
to 1 up to 0.5. This coincides with our intuition that functions
with small k are simpler than functionswith large k and thus,
their BDDs have fewer nodes and smaller APL.

4 BENCHMARK FUNCTIONS

The results of the previous section show that the averageAPL
over all symmetric functions and over all functions is close to
n, the maximum. This contrasts with the results from the
section on individual functions, showing that certain com-
monly used functions, like the AND, OR, and carry-out
functions, have small APL. Therefore, it is interesting to
examine benchmark functions since these attempt to repre-
sent functions used in practical logic design. We selected 189
benchmark functions from ISCAS 85 [24] and the Logic
SynthesisWorkshop (LGSynth 93). Sincemanyhavemultiple

outputs, this actually represents 4,352 single-output func-

tions. Using the heuristic minimizer [11], weminimized each

function’sAPL. Then,we plotted itsAPLdivided byn versus

n, where n is the number of variables.
The results are shown in Fig. 9. A data point near the top

corresponds to an average APL close to n. Note the general

decline in APL=n as n increases. This set of benchmark

functions includes many unate cascade functions and the

lower bound associated with these functions is clearly seen.

Contrasting the case of random functions, the values of

APL=n for benchmark functions are small, especially for

large n. Thus, most benchmark functions have quite

different properties than randomly generated ones. The

suggestion is that, for functions found in practice, the APLs

of the BDDs are much smaller than n.
Fig. 10 shows this same data, except, for the horizontal

axis, instead of plotting n, we plot N
2n=n, where N is the

number of nodes in the BDD. This shows that, when N
2n=n is

large, the APL tends to be large. This shows that BDDs with

more nodes tend to have larger APL. We have verified that

the lower bound line is approximately defined by unate

functions.

BUTLER ET AL.: AVERAGE PATH LENGTH OF BINARY DECISION DIAGRAMS 1047

TABLE 3
AvgAPLallðn; kÞ for n ¼ 6, 8, and 10 Variables

Fig. 9. APL
n versus n for 4,352 benchmark functions.

Fig. 10. APL
n versus N

2n=n for 4,352 benchmark functions.

5 CONCLUSIONS

Because it is related to the time of evaluation, the APL of a
BDD is a useful metric in analyzing a BDD. We have shown
that the APL for some functions, such as the carry-out,
depends strongly on the ordering of the variables. That is, it
can be as small as 4 or as large as n, for large n. We have, for
the first time, contrasted and compared the APL for a set of
common functions, including AND, OR, Exclusive OR,
majority, unate cascade, and Greater-than-or-equal-to func-
tions. Included in this set are the worst as well as the best
APL over all n variable functions. Our approach has been to
compute a distribution using generating functions from
which the APL is derived. Distributions of path lengths also
exhibit variability from wide, such as the majority function,
to narrow, as with the parity function. Table 4 summarizes
our results on APL.

We have also shown that the average of the APL over
symmetric functionsandoverall functions is large, approach-
ing n, the maximum as n increases. It is interesting that the
average APL over all functions does not approach n exactly:
rather, n less a constant. We have shown that, among all
n-variable functions, the APL of the parity function is
uniquely the function with maximum APL, n. We have
shown empirical evidence that suggests the actual average
approaches n, as n increases. In the case of symmetric
threshold functions, this average approaches n

2. For bench-
mark functions, the APLs are usually much less than n.

A topic only briefly discussed in this paper is the
correlation between minimum APL and the minimum
number of nodes. This has been discussed in papers on
minimization algorithms for APL [10], [11], where it has
been observed that, for many benchmark functions, the
BDD with the minimum APL does not correspond to the
BDD with minimum node count. There is an approximate
correlation. For example, [27] shows that the APL of a BDD
is the sum of the node traversing probabilities and it follows
that reducing the node count tends to reduce the APL.

APPENDIX

Theorem 1.

APLANDðnÞ ¼ 2� 1

2n�1
:

Proof.We begin by deriving the generating function [25] for
the distribution of path lengths in the BDD of the AND
function. For the AND function on n variables, there are
2n�1 assignments of values for which the path length is 1
(x1 ¼ 0 and two choices for each of the remaining n� 1

variables). This contributes 2n�1z1 to the generating
function. Similarly, there are 2n�2 assignments of values
to variables that have path length 2 and these contribute
2n�2z2 to the generating function. The other terms are
generated in a similar manner. Therefore, for the
n-variable AND, the generating function for the path
length distribution is

2n�1zþ 2n�2z2 þ � � � þ 22zn�2 þ 21zn�1

þ 2 � 20zn ¼
2n � znþ1

2

1� z
2

þ zn � 2n:

Dividing this by 2n yields GANDðnÞðzÞ, a generating
function for the fraction of paths of length 1; 2; 3;

GANDðnÞðzÞ ¼
1� ðz2Þ

nþ1

1� z
2

þ z

2

� �n

� 1: ð6Þ

The APL for the AND function, APLANDðnÞ is
calculated by summing the path lengths and dividing
by 2n. This can be done by differentiating GANDðnÞðzÞ
with respect to z (forming a weighted sum), multiplying
by z, and setting z ¼ 1. Performing these steps on (6)
yields the theorem. tu

Theorem 2. The unate cascade functions are uniquely those

functions whose BDDs have the smallest (2� 1
2n�1) APL

among all functions that depend on n variables.

Proof. It is clear that fðXÞ is a unate cascade function iff it
has a BDD in which all internal nodes have one edge
going to a terminal constant node. It remains to show
that this BDD has the smallest APL. The proof proceeds
by induction on n. For n ¼ 1, a 1-variable unate function
has a BDD whose APL is 1, which is the smallest of all
1-variable functions.

Assume the theorem holds for n ¼ m� 1. A BDD for
an m-variable function with the smallest APL has a
structure in which the root node connects to a constant
node by a single edge and the other connects to a BDD
whoseAPL is the smallest for functions ofm� 1 variables.
The APL is �ðmÞ ¼ 1

2 þ 1
2�ðm� 1Þ, where �ðm� 1Þ is the

smallest APL among m� 1-variable functions. Solving
this recurrence relation with the initial conditions �ð1Þ ¼
1 yields �ðmÞ ¼ 2� 1

2m�1 . tu
Theorem 3. The parity functions are uniquely those functions

whose BDDs have the largest (n) APL among all functions

that depend on n variables.

Proof. In the BDD for one parity function, the EXOR, all
paths have length n. This can be seen from Fig. 3, or it
can be inferred from the fact that every variable is
indispensable, i.e., every variable value is needed to
determine the function value, and all paths have an arc
labelled by every variable. Thus, APLEXORðnÞ ¼ n. A
similar statement is true of the other parity function, the
EXNOR, which is the complement of the EXOR.

1048 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

TABLE 4
Summary of the APL in BDDs of Various Functions for Large n

* Exact value.

Consider any function f other than a parity function.
It follows that there are two assignments A1 and A2 of
values to the variables that differ in exactly one variable,
say xj, such that the function has the same value for both
assignments. Consider a BDD with xj at the bottom. It
follows that a path from the root node to a terminal node
corresponding to either assignment A1 or A2 has n� 1 or
fewer edges since xj need not be evaluated. Since at least
one path has length n� 1 or less, the APL of f is strictly
less than n. tu

Theorem 6. The smallest APL in a BDD for the Greater-than-or-
equal-to function is 4� 5

2b
and is achieved when variables are

ordered in descending significance.

Proof. Let X ¼ fxb�1; xb�2; . . . ; x0g and

Y ¼ fyb�1; yb�2; . . . ; y0g

be the input variables of the Greater-than-or-equal-to
function. Let x ¼ xb�12

b�1 þ xb�22
b�2 þ . . .þ x02

0 and y ¼
yb�12

b�1 þ yb�22
b�2 þ . . .þ y02

0 be the standard binary
representations of the X and Y variables, respectively.
Then, the Greater-than-or-equal-to function fx�yðX;Y Þ ¼
1 iff x � y.

The proof proceeds by induction on b, where
b ¼ jXj ¼ jY j. For b ¼ 1, the Greater-than-or-equal-to
function is fx�y ¼ x0 _ �yy0, which is a unate cascade
function, such that APL ¼ 3

2 . Since 4� 5
2b
¼ 3

2 , for b ¼ 1,
the theorem holds for b ¼ 1. Assume it holds for
fx0�y0 ðX0; Y 0Þ, where jX0j ¼ jY 0j ¼ b� 1, and consider
the case of fx�yðX;Y Þ, where jXj ¼ jY j ¼ b. The proof
proceeds by showing that the minimum APL occurs
when the two most significant bits, xb�1 and yb�1, are the
top two variables in the BDD. This yields a BDD
containing the BDD of a b� 1 bit Greater-than-or-
equal-to function. In turn, its minimum APL is achieved
when the two most significant bits, xb�2 and yb�2, are at
the top, etc. The theorem follows from this.

For all orderings of variables in the BDD of the

Greater-than-or-equal-to function, there is no edge from

the root node to a terminal node since the determination
of whether x � y or not requires at least two variables.

Therefore, for all orderings of the BDD of the Greater-

than-or-equal-to function, all paths have length at least 2

and the BDD has the structure shown in Fig. 11. Here,

z1; z2 2 fxb�1; xb�2; . . . ; x0; yb�1; yb�2; . . . ; y0g and z1 6¼ z2.

In this structure, the four triangles represent the BDDs

of subfunctions of the Greater-than-or-equal-to function

corresponding to z1z2 ¼ 00; 01; 10; 11. We consider three
cases: 1) fz1; z2g ¼ fxb�1; yb�1g, 2) fz1; z2g ¼ fxk; ykg,
k 6¼ b� 1, and 3) all other choices for z1 and z2. In

Case 1, B01 and B10 are null; the edges going to their root

nodes go to terminal nodes, 0 and 1, respectively.

Further, B00 and B11 are identical and represent the

BDD of a Greater-than-or-equal-to function with b� 1 bit

pairs. By induction, an optimum ordering of that BDD

yields an APL of 4� 5
2b�1 . Thus, the APL of the BDD with

fz1; z2g ¼ fxb�1; yb�1g is

1

2
2þ 1

2
2þ 4� 5

2b�1

� �
¼ 4� 5

2b
: ð7Þ

In Case 2, B00 and B11 are BDDs for Greater-than-or-
equal-to functions on b� 1 variables. B01 and B10

represent BDDs that depend on only variables of higher
significance than i. The derivation of the APL, for this
case, is similar to that of Case 1 and yields a value greater
than that of Case 1.

Now, consider Case 3, where fz1; z2g 6¼ fxi; yig. We
show that, in Fig. 11, all sub-BDDs, B00, B01, B10, and B11

depend on all 2b� 2 variables. Thus, a lower bound on
the APL for this case is

2þ 1

4
LBðn� 2Þ þ 1

4
LBðn� 2Þ þ 1

4
LBðn� 2Þ

þ 1

4
LBðn� 2Þ ¼ 2þ LBðn� 2Þ;

ð8Þ

where LBðn� 2Þ is a lower bound on the APL of a
function of n� 2 variables. From Theorem 2, this is
2� 1

2n�3 . Thus, the APL for this case is

4� 1

22b�3
; ð9Þ

which is also larger than the APL for Case 1. Therefore,

the smallest APL occurs with xb�1 and yb�1 as the top two
variables.

We now complete the proof by showing that each B00,
B01, B10, and B11 realizes a function dependent on n�
2 ¼ 2ðb� 1Þ variables. We do it by contradiction. That is,
on the contrary, suppose that some variable, say xi (yi) is
not tested in Bj 2 fB00; B01; B10; B11g. Then, consider an
assignment of values such that yi ¼ 1 (xi ¼ 0) and all
other values are 0(1). Then, whether x � y depends on xi

(yi), the missing variable. It follows that all variables are
tested in Bj. tu

Theorem 7.

APLS THRESðn;tÞ ¼ 2k�
Xk
j¼1

n�j
k�j

� �
2n�j

j; ð10Þ

where k ¼ minft; n� tþ 1g.
Proof. The BDD of a symmetric threshold function is a

rectangle of t� ðn� tþ 1Þ nodes, one corner of which

serves as the root node and the opposite corner is just

above the two terminal nodes. For example, Fig. 3a

shows the case of an n� 1 rectangle, representing a

symmetric threshold function where t ¼ n (AND func-

tion). Also, Fig. 6 shows the case of a 3� 3 rectangle

BUTLER ET AL.: AVERAGE PATH LENGTH OF BINARY DECISION DIAGRAMS 1049

Fig. 11. BDD Structure of the Comparison Function.

representing a symmetric threshold function with t ¼
nþ1
2 for n ¼ 5 (majority function). There are n� tþ 1 arcs

emerging from the right side of the rectangle going to

nonterminal node 1. And, there are t arcs emerging from

the left side of the rectangle going to nonterminal node 0.

Since all paths from the root node to a nonterminal node

pass through one of these arcs, we can calculate the APL

by summing the fraction of paths associated with each

arc multiplied by the path length associated with that

arc. Doing this yields the generating function for the

distribution of path lengths for the symmetric threshold

function with threshold t as

GS THRESðn;tÞðzÞ ¼
Xn
j¼k

j� 1

k� 1

� �
þ j� 1

n� k

� �� �
z

2

� �j

;

where k ¼ minft; n� tþ 1g.
Differentiating GS THRESðn;tÞðzÞ with respect to z,

multiplying by z, and setting z to 1 yields a weighted

sum which, divided by 2n, yields the APL given in (10).tu
Theorem 8.

APLMAJðnÞ ¼ n� nþ 1

2n
n

n�1
2

� �
þ 1; ð11Þ

where n is odd.

Proof. The BDD of the majority function is a square of nodes
with one corner at the root node and the other corner just
above the two terminal nodes. Fig. 6 shows the BDD of
the five variable majority function. There are tþ 1
different path lengths. The shortest occurs when the
first t variables are all 1. In this case, the majority
function is 1, regardless of the values of the remaining
t� 1 variables. There are 2t�1 assignments to these
variables, each corresponding to a path of length t. Thus,
the contribution to the path length distribution is
expressed as 2t�1zt. The next shortest paths correspond
to assignments of values to the variables in which there
are t 1s and one 0. This yields a contribution to the
distribution of 2t�2 t

1

� 	
ztþ1. The contribution associated

with the path length assignments in which there are t 1s
and two 0s is 2tþ1 t

2

� 	
ztþ2, etc. Thus, the generating

function for the path length distribution is

2

�
2t�1zt þ 2t�2 t

1

� �
ztþ1 þ 2t�3 tþ 1

2

� �

ztþ2 þ . . . þ 2t� 2

t� 1

� �
z2t�1

�
:

The factor of 2 occurs because, for every path from the
root node to terminal node 1 associated with t 1s and i 0s,
there is a path from the root node to terminal node 0
associated with t 0s and i 1s. Rearranging this expression
yields

GMAJðnÞðzÞ ¼ 2tzt
Xt�1

i¼0

t� 1þ i

t� 1

� �
z

2

� �i

; ð12Þ

where n ¼ 2t� 1, for t ¼ 1; 2;
We compute APLMAJðnÞ by summing the path lengths

over all assignments of values to the variables and
dividing by 2n, the number of assignments. If all path

lengths are the maximum value, n, the sum of path
lengths over all assignments is n2n. Thus,

APLMAJðnÞ ¼
n2n �RðnÞ

2n
; ð13Þ

where RðnÞ is a reduction in the maximum weighted

sum caused by paths that do not reach the maximum

length. In the case of the majority function, all such paths

extend from some lower-middle node to a terminal node.

For example, if the first (top)mþ 1 variables are 1, where

m ¼ n�1
2 , then the majority function is 1 regardless of the

value of the remaining m variables, which can be chosen

in any of 2m ways. In the BDD of the majority function,

this corresponds to 2m paths, each contributing a

reduction of m to RðnÞ, for a total reduction of 2mm. In

the case where the first mþ 2 variables have mþ 1 1s

and one 0, the majority function is 1 regardless of the

value of the remaining m� 1 variables, which can be

chosen in 2m�1 ways. In the BDD of the majority

function, this corresponds to 2m�1 paths, each contribut-

ing a reduction of m� 1 to RðnÞ. Since there are mþ1
1

� 	
ways to choose where the 0 occurs, the total contribution

to the reduction RðnÞ in this case is mþ1
1

� 	
2m�1ðm� 1Þ. In

general, where the first mþ 1þ i variables have exactly

i 0s, the contribution to RðnÞ is mþi
i

� 	
2m�iðm� iÞ and we

can write

RðnÞ ¼ 2
Xm
i¼0

mþ i

i

� �
2m�iðm� iÞ; ð14Þ

where m ¼ n�1
2 . The factor 2 occurs because there are

corresponding paths that go to terminal node 0.

From Riordan [26], the sum in (14) represents the

probability distribution associated with Banach’s match-

box problem, which has a closed form solution. Namely,

Xm
i¼0

mþ i

i

� �
2m�iðm� iÞ ¼ ðmþ 1Þ 2mþ 1

m

� �
2�2m � 1:

ð15Þ

Combining (13), (14), and (15) yields (11). tu

Theorem 9.

APLBTREEðnÞ ¼ blog2ðnþ 1Þc þ ðnþ 1Þ � 2blog2ðnþ1Þc

blog2ðnþ 1Þc : ð16Þ

Proof. In the BDD of the BTREE function on n variables,

when n ¼ 2�ðnÞ � 1 for �ðnÞ ¼ 1; 2; . . . , all 2n assign-

ments of values to the variables correspond to a path

of length �ðnÞ ¼ blog2 nc. For other values of n,

namely, for 2�ðnÞ � 1 < n < 2�ðnÞþ1 � 1, there are ð2�ðnÞ �
EÞ22�þE�1��ðnÞ assignments of values to the variables that

correspond to a path of length �ðnÞ and E22
�þE�1��ðnÞ to

a path of length �ðnÞ þ 1. From this, the generating

function for the distribution of path lengths in the BTREE

function is given as

1050 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

GBTREEðnÞðzÞ ¼ ½1� ðn� 2blog2 nc þ 1Þ2�blog2 nc	zblog2 nc

þ ½n� 2blog2 nc þ 1	2�blog2 nczblog2 ncþ1:
ð17Þ

Differentiating GBTREEðnÞðzÞ with respect to z, multi-

plying by z, and setting z to 1, yields a weighted sum

which divided by 2n yields the APL given in (16). tu

Theorem 11.

APLAchillesGoodOrderðnÞ ¼ 6� 6
3

4

� �n
2

:

Proof. The BDD for the Achilles’ Heel function in the good

order is a cascade of sections each containing a BDD of

the two variable AND. AðZÞ ¼ 1
4 z

2 þ 1
2 z is the distribu-

tion of paths from the root node of this section to the

logic 0 side. The generating function for the distribution

of paths from the root node of the Achilles’ Heel good

order BDD is just AðzÞ
n
2 , as each AðzÞ enumerates the

path through the corresponding section. Similarly,
1
4 z

2 þ 1
4 z

2AðzÞ þ 1
4 z

2AðzÞ2 þ . . .þ 1
4 z

2AðzÞ
n
2�1, where 1

4 z
2

expresses the path probability beginning from the root

node of a section and the various AðzÞi terms represent

the ways to go to a root of a section. Adding the two

generating functions yields the generating function for

the distribution of path lengths for both the 0 and 1

nonterminal nodes

GAchillesGoodOrderðnÞðzÞ ¼
1

4
z2

1� ð14 z2 þ 1
2 zÞ

n=2

1� ð14 z2 þ 1
2 zÞ

þ 1

4
z2 þ 1

2
z

� �n=2

:

ð18Þ

We derive the APL by differentiating

GAchillesGoodOrderðnÞðzÞ

with respect to z, multiplying by z, and substituting

1 ! z. Doing this yields the theorem. tu

Theorem 12.

APLAchillesPoorOrderðnÞ ¼
n

2
þ 2� 2

3

4

� �n
2

:

Proof. The BDD for the order x1, x3, x5, . . . xn�1 x2, x4,

. . . , and xn consists of a complete balanced tree labeled

by x1, x3, x5, . . . xn�1 in which all paths have lengths
n
2. Each leaf in this tree is the root node of a different

sub-BDD of a function that is the OR. For example, in

the case where x1 ¼ x3 ¼ x5 ¼ . . . ¼ xn�1 ¼ 1, the sub-

BDD is for the OR function x2 _ x4 _ x6 _ . . . _ xn. The

APL for paths beginning with x1 ¼ x3 ¼ x5 ¼ . . . ¼
xn�1 ¼ 1 is n

2 þ 2� 1

2
n
2
�1 since 2� 1

2
n
2
�1 is the APL for an

n
2 -variable OR function. For other values of x1, x3, . . . ,

and xn�1, the sub-BDD is that of an OR function on

� variables, where � is the number of 1s among x1, x3,

. . . , and xn�1. It follows that

APLAchillesPoorOrderðnÞ ¼
n

2
þ 1

2
n
2

Xn
2

i¼0

n
2

i

� �
2� 1

2i�1

� �
:

Distributing the sum over the two terms in 2� 1
2i�1

� 	
and

expressing each in closed form yields the theorem. tu

Theorem 13.

AvgAPLAllSymðnÞ ¼ n� 1� 1

2n
: ð19Þ

Proof. A symmetric function, fðx1; x2; :::; xnÞ has the
Shannon decomposition, f ¼ �xx1f0 _ x1f1, where f0 ¼
f jx1¼0 and f1 ¼ f jx1¼1. From this realization, we have

AvgAPLAllSymðnÞ ¼
1

2
ð1þAvgAPLAllSymðn� 1ÞÞ

þ 1

2
ð1þAvgAPLAllSymðn� 1ÞÞ � 2

2nþ1
:

The factor of 1
2 corresponds to the fact that one-half of

the paths begin in 0 and one-half in 1. The 1þ term

corresponds to the edge from the root node to the BDDs

realizing f0 and f1. The term � 2
2nþ1 corresponds to a

deduction associated with choosing both f0 and f1 as a

constant 0 or 1 function. These contribute 2
2nþ1, but they

should contribute 0. Solving this recurrence relation
yields (19). tu

Theorem 14.

AvgAPLAllSymThresðnÞ ¼
n2 þ n

2ðnþ 2Þ :

Proof. There are nþ 2 symmetric threshold functions on

n variables, including the constant 0 and 1 functions,

corresponding to thresholds 0 and nþ 1, respectively. If

all paths in each have maximum length, then the

weighted sum over all paths is 2nn as there are 2n paths,

each of length n. However, many paths are truncated

and the weighted sum is actually 2nnðnþ 2Þ � �ðnÞ,
where �ðnÞ is a reduction. The reduction occurs because

paths are truncated when enough is known to comple-

tely determine that the threshold is exceeded or not

exceeded regardless of the remaining variable values.

For the two extreme thresholds, the function is a

constant 0 or 1 and the reduction is 2nn, completely

eliminating the BDD. This explains the 2nþ1n term in

�ðnÞ ¼ 2nþ1nþ 2
Xn�1

k¼0

2kk
Xn�1�k

j¼0

n� 1� k

j

� �
: ð20Þ

In (20), the sum over k counts the reduction when the

threshold is not exceeded and, thus, the factor of 2

accommodates the case when the threshold is exceeded

as well since the two cases are symmetrical. The sum

over k enumerates the cases where there are k

variables below the present level and none are needed

to determine the function value (it is 0, regardless of

these variable values). There are 2k ways to choose

these values and each choice reduces the path length

BUTLER ET AL.: AVERAGE PATH LENGTH OF BINARY DECISION DIAGRAMS 1051

by k. The sum over j enumerates the ways 0s can be

chosen for variables in the top of the BDD such that

the threshold is not exceeded. j ¼ 0 corresponds to the

threshold t ¼ kþ 1. In this case, there is n�1�k
0

� 	
¼

n�t
0

� 	
¼ 1 way to choose none among the n� 1� k ¼

n� t top variables to be 1. One more 0 results in n�
tþ 1 0s among the top variables and guarantees the

function is 0. j ¼ 1 corresponds to the threshold

t ¼ kþ 2. In this case, there are n�1�k
1

� 	
¼ n�tþ1

1

� 	
¼

n� tþ 1 ways to choose one among the top n� tþ 1

variables to be 1. One more 0 results in n� tþ 1 0s

among the top variables and guarantees the function is

0. Similarly, this argument applies to values of j up to

n� 1� k.
The summation over j is just 2n�1�k. Substituting into

(20) and rearranging yields

�ðnÞ ¼ 2nþ1nþ 2n
Xn�1

i¼0

i: ð21Þ

The summation is nðn�1Þ
2 . Substituting yields

�ðnÞ ¼ ðn2 þ 3nÞ2n�1: ð22Þ

We have

AvgAPLAllSymThresðnÞ ¼
2nnðnþ 2Þ � �ðnÞ

2nðnþ 2Þ : ð23Þ

Substituting (22) into (23) yields the theorem. tu

Theorem 15.

AvgAPLAllðnÞ � AvgAPLAllðn;�Þ ¼ ðn� 1Þ þ 1

2
�
Xn�1

i¼1

1

22i
:

ð24Þ

Proof. A general function, fðx1; x2; :::; xnÞ has the Shannon
decomposition, f ¼ �xx1f0 _ x1f1, where f0 ¼ f jx1¼0 and
f1 ¼ fjx1¼1. From this realization, we have

AvgAPLAllðn;�Þ ¼
1

2
ð1þAvgAPLAllðn� 1;�ÞÞ

þ 1

2
ð1þAvgAPLAllðn� 1;�ÞÞ � 1

22n�1 :

Here, the 1
22n�1 term is a deduction for the case where both

subfunctions of the Shannon decomposition are the

same. For each such subfunction, the root node and the

two arcs incident to it are redundant and the APL is one

more than it should be. Solving this recurrence relation

yields (24). tu

ACKNOWLEDGMENTS

This paper is an extended version of T. Sasao, J.T. Butler, and

M. Matsuura, “Average Path Length as a Paradigm for the

Fast Evaluation of Functions Represented by BinaryDecision

Diagrams,” which appeared in the Proceedings of the First

International Symposium on New Paradigm VLSI Computing,

pages 31-36, 12-14 December 2002. This research is partly

supported by the Grant in Aid for Scientific Research of the

Japan Society for the Promotion of Science (JSPS), funds from

the Ministry of Education, Culture, Sports, Science, and

Technology (MEXT) via a Kitakyushu Innovative Cluster

Project, and NSA Contract RM - A-54.

REFERENCES

[1] C. Lee, “Representation of Switching Circuits by Binary-Decision
Diagrams,” Bell System Technical J., vol. 19, pp. 685-999, July 1959.

[2] R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677-
691, Aug. 1986.

[3] N. Ishuira, H. Sawada, and S. Yajima, “Minimization of Binary
Decision Diagrams Based on Exchanges of Variables,” Proc. IEEE
Int’l Conf. Computer-Aided Design, pp. 472-475, Nov. 1991.

[4] R. Rudell, “Dynamic Variable Ordering for Ordered Binary
Decision Diagrams,” Proc. IEEE Int’l Conf. Computer-Aided Design,
pp. 42-47, Nov. 1993.

[5] R. Drechsler, N. Drechsler, and W. Gunther, “Fast Exact
Minimization of BDDs,” IEEE Trans. Computer-Aided Design,
vol. 19, pp. 384-389, Mar. 2000.

[6] S. Nagayama and T. Sasao, “On the Minimization of the Longest
Path Length for Decision Diagrams,” Proc. Int’l Workshop Logic
Synthesis, pp. 28-35, June 2004.

[7] P. Ashar and S. Malik, “Fast Functional Simulation Using
Branching Programs,” Proc. IEEE Int’l Conf. Computer-Aided
Design, pp. 308-412, Nov. 1995.

[8] P.C. McGeer, K.L. McMillan, A. Saldanha, and A.L. Sangiovanni-
Vincentelli, “Fast Discrete Function Evaluation Using Decision
Diagrams,” Proc. Int’l Conf. Computer-Aided Design, pp. 402-407,
Nov. 1995.

[9] T. Sasao, Y. Iguchi, and M. Matsuura, “Comparison of Decision
Diagrams for Multiple-Output Logic Functions,” Proc. 11th Int’l
Workshop Logic Synthesis, pp. 379-384, June 2002.

[10] Y.Y. Liu, K.H. Wang, T.T. Hwang, and C. Liu, “Binary Decision
Diagram with Minimum Expected Path Length,” Proc. Design
Automation and Test in Europe (DATE2001), pp. 1-5, Mar. 2001.

[11] S. Nagayama, A. Mischenko, T. Sasao, and J.T. Butler, “Mini-
mization of Average Path Length in BDDs by Variable Reorder-
ing,” Proc. 12th Int’l Workshop Logic Synthesis, pp. 207-213, May
2003.

[12] Y. Iguchi, T Sasao, and M. Matsuura, “Evaluation of Multiple-
Output Logic Functions Using Decision Diagrams,” Proc. ASP-
DAC (Asia and South Pacific Design Automation Conf., pp. 312-315,
Jan. 2003.

[13] J. Butler and T. Sasao, “On the Average Path Length in Decision
Diagrams of Multiple-Valued Functions,” Proc. 23rd Int’l Symp.
Multiple-Valued Logic, pp. 383-390, May 2003.

[14] D.A. Bell, “Decision Trees, Tables, and Lattices,” Pattern Recogni-
tion: Ideas in Practice, B.G. Batchelor, ed., chapter 5, New York:
Plenum Press, 1978.

[15] D.E. Knuth, “Mathematical Analysis of Algorithms,” Proc. IFIP
Congress 71, vol. 1, pp. 135-143, 1971.

[16] M. Hanani, “An Optimal Evaluation of Boolean Expressions in an
Online Query System,” Comm. ACM, vol. 20, pp. 344-347, May
1977.

[17] W. Qin and S. Malik, “Automated Synthesis of Efficient Binary
Decoders for Retargetable Software Toolkits,” Design Automation
Conf., pp. 764-769, June 2003.

[18] B.N.E. Moret, “Decision Trees and Diagrams,” Computing Surveys,
vol. 14, pp. 593-623, Dec. 1982.

[19] S.K. Murthy, “Automatic Construction of Decision Trees from
Data: A Multi-Disciplinary Survey,” Data Mining and Knowledge
Discovery, vol. 2, pp. 345-389 Oct. 1998.

[20] Y. Breithart and S. Gal, “Analysis of Algorithms of the Evaluation
of Monotonic Boolean Functions,” IEEE Trans. Computers, vol. 27,
no. 11, pp. 1083-1087, Nov. 1978.

[21] T. Sasao and K. Kinoshita, “On the Number of Fanout-Free
Functions and Unate Cascade Function,” IEEE Trans. Computers,
vol. 28, no. 9, pp. 682-685, Sep. 1979.

[22] T. Sasao, Switching Theory for Logic Synthesis. New York: Kluwer
Academic, 1999.

1052 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 9, SEPTEMBER 2005

[23] B.N.E. Moret, M.G. Thomason, and R.C. Gonzalez, “Symmetric
and Threshold Boolean Functions Are Exhaustive,” IEEE Trans.
Computers, vol. 32, no. 12, pp. 1211-1212, Dec. 1983.

[24] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits,” Proc. IEEE Int’l Symp. Circuits and Systems,
pp. 695-698, 1985.

[25] C.L. Liu, Introduction to Combinatorics. New York: McGraw-Hill,
1968.

[26] J. Riordan, Combinatorial Identities, p. 31. New York: John Wiley &
Sons, 1968.

[27] T. Sasao, Y. Iguchi, and M. Matsuura, “Comparison of Decision
Diagrams for Multiple-Output Logic Functions,” Proc. Int’l Work-
shop Logic and Synthesis, pp. 379-384, June 2002.

[28] M. Tachibana, “Heuristic Algorithms for FBDD Node Minimiza-
tion with Application to Pass-Transistor-Logic and DCVS Synth-
esis,” Proc. Workshop Synthesis And System Integration of MIxed
Technologies (SASIMI), pp. 96-101, Nov. 1996.

[29] K. Yano, Y. Sasaki, K. Rikino, and K. Seki, “Top-Down Pass-
Transistor Logic Design,” IEEE J. Solid State Circuits, vol. 31,
pp. 792-803. June 1996.

[30] C. Scholl and B. Becker, “On the Generation of Multiplexer
Circuits for Pass Transistor Logic,” Proc. Design Automation and
Test in Europe, pp. 372-378, 2000.

[31] T.H. Liu, M.K. Ganai, A. Aziz, and J.L. Burns, “Performance
Driven Synthesis for Pass Transistor Logic,” Proc. Int’l Workshop
Logic Synthesis, pp. 255-259, 1998.

[32] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimiza-
tion System,” IEEE Trans. CAD, vol. 27, no. 7, pp. 866-876, 2002.

[33] R. Ebendt, W. Gunther, and R. Dreschler, “Minimization of
Expected Path Length in BDDs Based on Local Changes,” Proc.
ASP-DAC (Asia and South Pacific Design Automation Conf., pp. 866-
871, Jan. 2004.

Jon T. Butler (S’67-M’67-SM’82-F’89) received
the BEE and MEngr degrees from Rensselaer
Polytechnic Institute, Troy, New York, in 1966
and 1967, respectively. He received the PhD
degree from The Ohio State University, Colum-
bus, in 1973. Since 1987, he has been a
professor at the Naval Postgraduate School,
Monterey, California. From 1974 to 1987, he
was at Northwestern University, Evanston,
Illinois. During that time, he served two periods

of leave at the Naval Postgraduate School, first as a National Research
Council Senior Postdoctoral Associate (1980-1981) and second as the
NAVALEX Chair Professor (1985-1987). He served one period of leave
as a foreign visiting professor at the Kyushu Institute of Technology,
Iizuka, Japan. His research interests include logic optimization and
multiple-valued logic. He has served on the editorial boards of the IEEE
Transactions on Computers, Computer, and IEEE Computer Society
Press. He has served as the editor-in-chief of Computer and IEEE
Computer Society Press. He received the Award of Excellence, the
Outstanding Contributed Paper Award, and a Distinctive Contributed
Paper Award for papers presented at the International Symposium on
Multiple-Valued Logic. He received the Distinguished Service Award,
two Meritorious Service Awards, and nine Certificates of Appreciation for
service to the IEEE Computer Society. He is a fellow of the IEEE.

Tsutomu Sasao (S’72-M’77-SM’90-F’94) re-
ceived the BE, ME, and PhD degrees in
electronics engineering from Osaka University,
Osaka, Japan, in 1972, 1974, and 1977,
respectively. He has held faculty/research
positions at Osaka University, Japan, the
IBM T.J. Watson Research Center, Yorktown
Heights, New York, and the Naval Postgrad-
uate School, Monterey, California. He has
served as the director of the Center for

Microelectronic Systems at the Kyushu Institute of Technology,
Iizuka, Japan, where he is currently a professor in the Department
of Computer Science and Electronics. His research areas include
logic design and switching theory, representations of logic functions,
and multiple-valued logic. He has published more than eight books
on logic design including, Logic Synthesis and Optimization,
Representation of Discrete Functions, Switching Theory for Logic
Synthesis, and Logic Synthesis and Verification (Kluwer Academic,
1993, 1996, 1999, 2002, respectively). He has served as program
chairman for the IEEE International Symposium on Multiple-Valued
Logic (ISMVL) many times. Also, he was the symposium chairman of
the 28th ISMVL held in Fukuoka, Japan, in 1998. He received the
NIWA Memorial Award in 1979, Takeda Techno-Entrepreneurship
Award in 2001, and Distinctive Contribution Awards from the IEEE
Computer Society MVL-TC for papers presented at ISMVL in 1987,
1996, 2003, respectively. He has served as an associate editor of the
IEEE Transactions on Computers. He is a fellow of the IEEE.

Munehiro Matsuura studied at the Kyushu
Institute of Technology from 1983 to 1989. He
received the BE degree in natural sciences from
the University of the Air, Japan, in 2003. He has
been working as a technical assistant at the
Kyushu Institute of Technology since 1991. He
has implemented several logic design algorithms
under the direction of Professor Tsutomu Sasao.
His interests include decision diagrams and
exclusive-OR-based circuit design.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BUTLER ET AL.: AVERAGE PATH LENGTH OF BINARY DECISION DIAGRAMS 1053

